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Question 1

The correct solution is c. Consider the momentum equation:∑
F⃗ =

∂

∂t

∫
CV

v⃗ρdV +

∫
CS

v⃗ρ(V⃗ · dA⃗). (1)

The time derivative term on the RHS is zero in the steady flow. With the
uniform flow assumption, the integration of momentum flux over the control
surface (the second term on the RHS) can be simplified to:

Mx = ρVx

∫
CS

V⃗ · dA⃗ = ρVxQ. (2)

Question 2

We build the control volume as in Fig 1. Consider the momentum equation:

Figure 1: Control volume.
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∑
F⃗ =

∂

∂t

∫
CV

v⃗ρdV +

∫
CS

v⃗ρ(V⃗ · dA⃗). (3)

In the x direction, we can simplify it to:

Fx = ṁovo. (4)

This is the force we exert on the CV. The counter-reacting force we experience
is F ′

x = −Fx = −ṁovo, which pushes us to the left.

Question 3

The correct answer is c. The flow is shown in Fig 2.

Figure 2: A half-filled duct pipe.

The definition of the kinetic energy correction factor α is the ratio between
the actual energy flux across the surface and the energy flux calculated from
the mean velocity on the surface:

α =
1

A

∫
A

(
V

V

)3

dA (5)

Since only the lower half of the duct is filled with fluid, we find that V = 0.5V .
Furthermore, the integration over the upper half of the cross-section is zero.
Therefore, we have:

α =
A/2

A

(
V

0.5V

)3

= 4.0. (6)
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Question 4

• (a) The energy line will be horizontal or slipping upward in the direction
of flow.
This statement is false. In real flows, the energy carried by the flow will
gradually dissipate into heat as it moves further due to surface resistance.
So the energy grade line (EGL) always trends downwards, unless a pump
injects the energy back into the flow externally.

• (b) The energy line can never be horizontal or slopping upward in the
direction of the flow.
This statement is true. The only case when an EGL moves upwards is
with the help of a pump. However, we have specified that no additional
source of energy is introduced in the system.

• (c) The Piezometric line can never be horizontal or slopping upward in
the direction of the flow.
This statement is false. The Piezometric line, a.k.a the hydraulic grade
line (HGL), can rise upward in real flows. For example, at the gradually
expanding entry from a pipe to a reservoir, the gradual expansion allows
kinetic energy to be converted to pressure head with much smaller hL.
Hence the HGL tilts upwards and converges to EGL at the free surface.

Figure 3: A gradually expanding entry.
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• (d) The center line of the pipe can never be above the Piezometric line.
This statement is false. A counter-example is a siphon system, where
the centreline of the flow can be above the Piezometric line. In this case,
the pressure levels in some parts of the pipe become subatmospheric, and
cavitation could happen there.

Figure 4: A siphon system.

Question 5

The cart will not move. If we build a control volume around the cart, we can see
that there is no momentum flux coming in or coming out of the CV. Therefore,
no force will be exerted on the cart.
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Problem 1

Figure 5: Control volume.

To solve this problem, we consider the conservation of mass in the control
volume (Fig 5):

∂

∂t

∫
CV

ρdV +

∫
CS

ρ(V⃗ · dA⃗) = 0. (7)

Since the flow is steady and incompressible, we can simplify it to:∫
CS

V⃗ · dA⃗ = 0. (8)

In other words, we only need to consider the balance of volume flow rates at
different surfaces of the CV. The inlet is on the left surface, and the outlets are
on the right and top surfaces:

Qleft = Qright +Qtop. (9)

At the left inlet with a uniform profile, we have

Qleft = U0bδ. (10)

At the right inlet, we need to integrate the velocity profile over the height:

Qright =

∫ δ

0

U0b

2
(
3y

δ
− y3

δ3
)dy =

5

8
U0bδ (11)

Therefore, we have

Qtop = U0bδ −
5

8
U0bδ =

3

8
U0bδ. (12)
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Problem 2

To solve this problem, we build the control volume shown in Fig 6.

Figure 6: Control volume.

We first apply the conservation of mass to this CV:

∂

∂t

∫
CV

ρdV +

∫
CS

ρ(V⃗ · dA⃗) = 0. (13)

ṁ1 = ṁ2. (14)

V1h1 = V2h2. (15)

V2 = V1
h1

h2
. (16)

Secondly, we apply the conservation of momentum:∑
F⃗ =

∂

∂t

∫
CV

v⃗ρdV +

∫
CS

v⃗ρ(V⃗ · dA⃗). (17)

Since we are solving a horizontal force F , we only consider the x direction of
the equation and apply the uniform flow simplification:∑

F⃗x = ṁ2v2 − ṁ1v1. (18)

We then identify the x-direction external forces acting on the CV (Fig 7).
Notice that here we need to consider the hydro-static force acting on the inlet
and outlet surface of CV due to the consideration of gravity. The formula for
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Figure 7: External forces.

the hydrostatic force acting on a vertical surface with a submerged depth of h
and a width of b is:

Fp =
1

2
ρgh2b (19)

Therefore, we have ∑
F⃗x =

1

2
ρgh2

1b−
1

2
ρgh2

2b− F. (20)

Now we consider the RHS of the momentum equations:

ṁ2v2 − ṁ1v1 = ṁ1(v2 − v1) = ρv21h1b(
h1

h2
− 1). (21)

Therefore, the external force needed to hold the gate is

F =
1

2
ρgh2

1b−
1

2
ρgh2

2b− ρv21h1b(
h1

h2
− 1) ≈ 333.4kN. (22)
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Problem 3

To solve this problem, we define a moving CV fixed on the cart:

Figure 8: Control volume.

In the first step, we apply the conservation of mass:

∂

∂t

∫
CV

ρdV +

∫
CS

ρ(V⃗ · dA⃗) = 0. (23)

ṁ1 = ṁ2 + ṁ3. (24)

Notice that although our reference system is moving with the cart, it is still
an inertial reference system as long as the speed of the cart is constant.
Therefore, we have:

v1A1 = v2A2 + v3A3. (25)

A2 = A3 = 0.5A1. (26)

Since the two small jets are equal, we have

v2 = v3. (27)

We find that
v1 = v2 = v3 = vj − vc. (28)
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Notice that v1 is the jet velocity we observe on the moving cart.
Now, we can apply the momentum equations to compute the force needed

to act on the cart to keep its speed constant.
In the x direction, we have

Fx = −ṁ1v1 = −ρ(vj − vc)
2Aj = −7.5N. (29)

In the y direction, we have

Fy = ṁ2v2 + ṁ3v3 = ρ(vj − vc)
2Aj/2− ρ(vj − vc)

2Aj/2 = 0N. (30)
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Problem 4

• (a) During the daytime, the water flows from reservoir 1 to 2, so the energy
equation from point 1 to point 2 is:

z1 + α
v21
2g

+ hp = z2 + α
v22
2g

+ ht + hL. (31)

Both reservoirs are still and open to the atmosphere, thus v1 = v2 = 0
m/s, p1 = p2 = 0 Pa, α ≈ 1. The pump is not operating during the day,
so hp = 0 m. We simplify the energy equation into:

z1 = z2 + ht + hL. (32)

We find that the turbine head ht = 37 m, and the energy extracted from
the flow by the turbine is Pt = ṁght ≈ 363 kW.

• (b) Since the efficiency factor of the turbine is 0.8, the power generated
by the turbine is Pgen = 0.8Pt ≈ 290 kW.

• (c) The HGL and EGL during the daytime are shown in Fig 9.

Figure 9: Daytime EGL (solid line) and HGL (dashed line).

• (d) During the night, the pump operates, and the turbine stops. The
simplified energy equation from point 2 to point 1 is

z2 + hp = z1 + hL. (33)

We find that hp = 47 m, and the power exerted by the pump to the water
is Ppump = ṁghp ≈ 461 kW.
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Figure 10: Night time EGL (solid line) and HGL (dashed line).

• (e) The efficiency factor of the pump is 0.8, so the electric power consumed
by the pump is Pe = Ppump/0.8 ≈ 576 kW.

• (f) The HGL and EGL during the night time are shown in Fig 10.
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